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The flow of a fluid in a narrow spherical annulus is considered. When the outer sphere 
remains fixed and the angular velocity of the inner one is increased beyond a critical 
value an instability resembling Taylor vortices appears. This instability is investigated 
by expanding the solution in powers of the small parameter e, the ratio of the gap 
thickness to the radius, and assuming that two length scales, O(1) and U(s) ,  are 
important in the latitudinal direction. 

The perturbation then takes the form of cells which are of roughly square cross- 
section, at least near the equator, but whose amplitude decays rapidly with latitude; 
it is also subject to a slow spatial modulation. The critical value of the Taylor number 
at which the instability first appears is shown to be that for infinite concentric cylinders 
plus a correction U ( e )  due to secondary motions and a correction not greater than U(e)  
due to the domain being bounded. 

1. Introduction 
The linear stability of the flow between infinitely long, differentially rotating con- 

centric circular cylinders is now we11 known and well understood. If the speed of the 
inner cylinder is increased above a critical value the flow becomes unstable and takes 
the form of regular cellular toroidal vortices, called Taylor vortices. In  recent years 
some attention has been devoted to the effect of end walls on this and the similar 
BBnard convection flow. The presence of end walls makes separation of the variables 
difficult and poses great mathematical problems. Pellew & Southwell (1940) were the 
first to circumvent these difficulties by allowing a slip condition on the end walls and 
Davis (1967) has solved the BBnard problem numerically. More recently Drazin (1975), 
Hall & Walton (1977), Segel (1969) and Daniels (1977) have made progress with the 
BBnard problem with free surfaces, in which the variables are separable. 

I n  this paper we consider a geometry which, although the variables are still not 
separable, does allow some progress to be made analytically. The fluid fills the (narrow) 
gap between two concentric spheres and is set in motion by the rotation of the inner 
one. When its speed is sufficiently high, instability is observed to set in as cellular 
vortices, similar to Taylor vortices, near the equator (Sawatzki & Zierep 1970; Wimmer 
1976) and as the speed is further increased vortices appear a t  higher latitudes. Further- 
more, the critical value of the dimensionless parameter governing the flow, the Taylor 
number T, is observed to be very dose to that for infinite concentric cylinders, at  
least when the gap between the spheres is narrow. 

The linear stability of this flow has been investigated numerically by Bratukhin 
(1961) and Munson & Menguturk (1975) for arbitrary gap widths. Both these studies 
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674 I .  C .  Walton 

rely heavily on expansions in spherical harmonics. Munson & Joseph (1971b) have 
discussed the stability by an energy method. 

In  none of these studies has the close similarity with Taylor vortices been exploited 
and we seek to do that in this paper. We suppose that E = (R, - R,)/R, .g 1, where 
R1 and R, are the radii of the inner and outer spheres, and seek the value of the Taylor 
number T = Rl Q;(R2 - Rl)3/v2 at which the flow first becomes unstable. Here Ql is the 
angular velocity of the inner sphere and Y the kinematic viscosity of the fluid. To a first 
approximation in E we show that the critical value of T at which the cellular motion 
first occurs is the same as that for infinite concentric cylinders. 

The unperturbed flow is discussed in $2. As in Munson & Joseph (1971 a), we assume 
that a Reynolds number R41 is small and expand in powers of RM. Here we define 
R,w = s2Re, where Re = Q,R;/v is Munson & Joseph's Reynolds number. Then 
sT = R2, and the restriction that T be O( 1)  requires that RM is O(s4). Furthermore, by 
assuming that E < 1 we may expand in powers of E also and avoid expanding in 
spherical harmonics. To a first approximation in RM and E the basic flow is mesidional 
and its profile is a simple radial shear whose magnitude decreases with latitude. It may 
be expected then, as several authors have already suggested, that the neighbourhood 
of the equator is the most unstable region and that, since E < 1, the curvature of 
the container plays only a minor role and the flow is similar to that between infinite 
concentric cylinders. 

If the instability sets in as toroidal cells of roughly square cross-section, then two 
length scales in the latihdinal direction, O(1) and O(E) ,  are likely to be important. 
Such a structure is amenable to description by a WKB or multiple-scale analysis. I n  
$ 3 we formulate the linear stability problem in this way by writing the perturbed 
angular velocity Q as 

and the Taylor number T as 

T = T,+ET,+E~T,+ ... . 
Here x is a radial variable, 8 is the co-latitude, t is the time and the growth rate. An 
eigenvalue problem for the wavenumber k is obtained in $ 4  which must be solved 
numerically for each value of 8 and a prescribed value of To; there are six solutions. 

Close to the equator the solution (1.1) breaks down because of the coincidence of 
two pairs of eigenvalues and a new scaling is needed. The solution in the region 
in - 8 - E* is given in 9 5 in terms of Airy functions. This solution in turn breaks down 
and an inner region of thickness E is needed where the O ( E )  correction to the basic flow 
is even less dominant. 

A new scaling near the poles 8 = 0, rr and the boundary conditions at  0 = 0, n are 
treated in $ 6. A summary and a discussion of the results are given in $ 7. 

2. The undisturbed flow 
In  this section we consider the steady flow set up in the gap between two concentric 

spheres of radii R, and R,(Rl < R,) when the gap is filled with a viscous incompressible 
fluid and the inner sphere is rotated with angular velocity Q1. 
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In  terms of spherical polar co-ordinates (r*,  8, $), the assumption that the flow is 
axisymmetric is equivalent to ignoring longitudinal derivatives. The dimensional 
velocity components (v:, v;S, v*,) may then be written in terms of a dimensionless stream 
function $ and circulation Q as follows: 

Here r = r*/R, is a dimensionless radius. As we shall be concerned only with the flow 
in a narrow annulus, i t  is convenient to introduce a radial variable x scaled on the gap 
width. Thus we write r = l+ex ,  

where E = (R, - Rl)/Rl is a dimensionless measure of the gap width. 
In  terms of $ and Q the Navier-Stokes equations are (Rosenhead 1963, p. 132) 

2Q(Qx(1 +ex) cos B - e sin 8 ~ )  - $.,(D$), - $ e ( 1 3 2 $ ) x  

(1  + sin2 8 ( 1  + C X ) ~  sin 8 

2D2$((1 +ex) cosB$,-csi118$~) = R%'B4$, (2.2) 
( 1  + ex)3 sin2 8 + 

where 

Here suffixes x and 8 denote partial derivatives with respect to x and 0. In  the modified 
Reynolds number RM = Q1(R2 - Rl)2/u, v is the kinematic viscosity and R, - R, and 
.Rl(R, - R,) are characteristic lengths and velocities. RM is related to the more usual 
Reynolds number R e  = Q, R;/u by RIM = e2Re. 

The specification of the problem is completed with the no-slip conditions a t  the 
inner and outer spherical boundaries, i.e. 

(2.4) I $* = $., = 0 a t  x = 0'1; 

Q = sin28 at x =  0 ;  Q = 0 a t  x =  1. 

As in Munson & Joseph's (1971a)  treatment of the flow, we shall assume that the 
appropriate Reynolds number is small, but we shall make the further assumption that 
the gap width e is small also. $ and Q may then be expanded in powers of RM and 6 as 
follows: 

(2.5) 
$ = R M ( $ O , + R ~ $ ~ O + & $ O ~ + O ( R ~ , € ~ , R ~  8 

Q = Qoo + R& Qlo + cQ0, + O(R$, €2, Rse) .  ))'I 
Munson & Joseph (1971 a )  indicate that the leading terms (as far as R&) give an 

accurate representation of the solution for RM 5 10. If the gap width is small, say 
e x this is equivalent to Re 5 lo5, and the Taylor number T 5 lo5 (see § 3 ) ,  
which is sufficiently large for our purposes. 

The major simplification afforded by taking e < 1 is now clear: derivatives in 0 
contain powers of RLI or e, so that on substituting the expansion (2.3) into (2.2) and 
equating coefficients of powers of Rnf and e we effectively obtain only ordinary 
differential equations. 
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676 1. c. Wulton 

Thus we have 
a 2 Q o 0 p  = o 

with fioo = sin28 a t  2: = 0 and Qo0 = 0 a t  x = 1. Hence we have 

Roo = (1 - z) sin2 8. 

Also 

with qko0 = $oo, = 0 a t  x = 0 , l .  Hence 

$oo = - 2uoO(x) sin28 cos 8, 

where uoo(x) = 22(1-2)2(3-5)/5!. 

Equating terms in E we obtain 

with Rol = $ol = $olx = 0 at x = 0 , l .  Hence 

R,, = 0, 

$o, = - uo,(x) sin2 8 cos 8, 

where = sxyx- 1)3(2x-3)/6!. 

Equating coefficients of R$ we obtain 

( 2 . 7 ~ )  

(2.7b) 

(2.8) 

( 2 . 9 ~ )  

(2.9b) 

with Ql0 = $lo = $lox = 0 at x = 0 , l .  After some algebra we obtain 

Qlo = blol(z) sin2 8 + b,,,(z) sin4 8, (2.10u) 

where 

b,,,(x) = 4x(x - 1) (x - 3) (22 - 3) ( lox3 - 15x2 + 6x + 3)/5 x 7 !, 

blO2(x) = -x(x-1)(10x5-60x4+123x3- 102x2+18x+18)/5x 6!, 
} (2.106) 

and 

where 

$lo = ulol(x) cos 8 sin2 B + alo,(x) cos 8 sin4 8, (2.11 a )  

U,,,(Z) = 96x2(x - 1)2 (530~ '  - 4770~'  + 1 5 2 8 5 ~ ~ -  

(2.11 b) 
+ 1O647x3+5457x2-6861~- 1359)/5!11!, 

alO2(x) = - 9 6 ~ ' ( ~  - 1)2 ( 7 0 ~ '  - 6 3 0 ~ '  + 2 5 2 0 ~ ~  - 5 2 2 0 ~ ~  

+ 4 8 6 0 ~ ~  + 1 0 8 0 ~ ~ -  4 7 7 9 ~ -  243)/5! 1 l!. 

We note that, a t  least t o  this order, R is Symmetric and 9 antisymmetric about the 
equator. I n  other words the radial and meridional velocities are symmetric and the 
azimuthal velocity antisymmetric; consequently there is no flow across the equator. 
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3. The formulation of the linear stability problem 

that there is a small perturbation of the basic flow in the form 
We now consider the linearized stability of the basic flow presented in fj 2 .  We suppose 

#total = + + + a 3 7  Qtota1 = Q + A Q ,  
_ -  

where ($, Q) is the basic solution, ($, a) is a perturbation and A a small parameter. 
This is substituted into ( 2 . 1 )  and terms quadratic in A ignored. Of course, $ and f?l are 
functions of two spatial variables x and 0, so that this results in a pair of partial 
differential equations, viz. 

(1  + sin 8 
(Dz- a) f?l = - ( B T ) ~  (3 .1 )  

We have assumed a time dependence of the form exp {at), where cr is a dimensionless 
growth rate, and we have written RM = (cT)  4, where T = Rl !2:(Rz - R1)3/v2 is the 
Taylor number. 

At the rigid boundaries we must satisfy the no-slip conditions, i.e. 
- - -  

$ = $ z = Q = O  at x=O,l. ( 3 . 3 )  

In addition we require that 

vug = v+ = 0, v, finite a t  6' = O,n, 

and this means that 
- 

9 -  6'2 for 194 I ;  @.- (n-6')z for n-8< 1.  (3 .4 )  

Equations ( 3 . 1 )  and ( 3 . 2 )  may be simplified by making some assumptions about the 
form of $ and a. Variations in the radial direction have already been assumed to take 
place on ascale O(e). I f  the instability occurs as Taylor vortices whose amplitude varies 
with 6' as experiments (Sawatzki & Zierep 1970; Wimmer 1976) lead us to believe, then 
we may expect that scales O(s)  and O( 1 )  in 6' will be important. A multiple-scaling or 
WKB formulation is then called for and we may look for solutions in the form 

6 

(p, Q )  = ~ ~ ( 0 )  egtexp (is ~ 0 )  do] ( ( e ~ a f ~ ( 0 ,  x), go(@, x)) + ~ ( e ) .  ( 3 . 5 )  

We shall see later that six possibilities for k(8) and A,(@ emerge in principle, so that 
the solution which satisfies the six conditions a t  the poles and equator requires sum- 
mation over all six possibilities. The basic flow must also be expanded in powers of B ;  

from (2.5) we have 

I n  

@ = ( m w O O  + Q$IO + $ 
(3 .6 )  a = 5200 + e(TQ,o + + O(e2). 
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The right-hand sides of (3.1) and (3.2) are thenO(T) andmax {O(T), O( 1))respectively. 
We shall henceforth assume that T is O(1) and that E is the only small parameter (in 
other words BM is O(s4)).  

The system of partial differential equations (3.1) and (3.2) and boundary conditions 
(3.3) and (3.4) defines an eigenvalue problem 

P(u, T , E ,  k) = 0 (3.7) 

which must be solved for each value of 8. RM does not appear explicitly in (3.7) 
because it is a function of T and E .  The flow is unstable if there exist solutions of 
(3.7) with R e v  > 0. 

Since the azimuthal velocity of the inner boundary decreases monotonically with 
latitude we may expect that the flow is most unstable at the equator (8 = 4.). A critical 
Taylor number T, may then be defined as the lowest value of T which satisfies (3.3) 
with Re cr = 0 and kreal at 8 = in. For E = 0 the problem reduces to that for concentric 
cylinders, for which the solution is well known, namely T,  = 1694.95 with k = 3.1265 
and v = 0. We shall assume that the critical conditions are determined by cr = 0 for 
E > 0 also. 

A t  higher latitudes the flow is subcritical but we may nevertheless obtain solutions 
with T = T,  and u = 0 by allowing k to take complex values. In  fact, k bifurcates at 
8 = in and gives rise to two complex values with Re k > 0 for 8 =+ Bn. One of these, 
which we shall denote by k(l), has negative imaginary part for 8 < in and therefore 
represents solutions which decay exponentially with latitude. The second solution, 
k@), demonstrates exponential growth but is equally acceptable because the domain is 
finite. It turns out that both solutions are needed to satisfy the finiteness condition (3.4) 

We now substitute the expansions (3.6) and (3.5) of the basic flow, and the perturba- 
tion for E small into the perturbation equations (3.1) and (3.2). A corresponding 
expansion 

is assumed for T, in which To = 1694.95 and TI will be determined. 
It turns out that this form of solution is valid only in mid-latitudes; near the 

equator (8 = 4n) and the poles (8 = 0, n) separate solutions must be obtained. These 
are discussed in $0 5 and 6. 

on cosec 8 a$/ae a t  8 = 0 , ~ .  

(3.8) T = To+~TI+~2T2+... 

4. The linear stability problem in mid-latitudes 
4.1. Order EO 

On substituting (3.5), (3.6) and (3.8) into (3.1) and (3.2) and equating terms O(eo), we 
obtain Mg, + ikTo sin Ofo = 0, 

Nfo-Pgo = 0, 

where M 3 (D2 - k2 - v) - ikTouho(x) sin 28, 

N G ( 0 2 -  k2) (D2 - k2 - v) - ikTosin 28(u&,(x) (D2 - k2)  - uto(x)),  

P = 2cos8((l-x)D- l)-Zik(l-x)sinO, 

D = a p x  
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and primes denote differentiation with respect to x. The boundary conditions and a 
normalization condition are 

f o = f A = g O = O  a t  x = O , I ;  f ; = 1  at z = O .  (4.2) 

Here 8 is effectively a parameter and the system (4.1) may be regarded as one of 
ordinary differential equations in x forming an eigenvalue problem for k in terms of 
B and To for each value of 8. For 8 = in, these equations reduce to those describing the 
instability of the flow between infinite concentric cylinders, i.e. curvature of the 
boundaries isneglected in this approximation. This is the classic Taylor-vortexproblem 
and the solution is well known: the critical value of the Taylor number is To = 1694.95 
when k = k ,  = 3.1265 with B real and therefore equal to zero. We assume that B does 
not vary with 8 and may henceforth be taken to be zero everywhere. 

Away from the equator the solution bifurcates and there are two complex values of k: 
with Re k > 0 for each value of 8. We denote the two eigenvalues by k(') and k(2) and the 
corresponding eigenfunctions by (fJ1)(8, x), gh1)(8, x)) and (fb2)(8: x), gh2)(S, x)). 
Numerical computation of k indicates that the imaginary part of each eigenvalue has 
constant sign in (0, in-). We define k(l) and k@) such that 

Im k(l) < 0, Im k(2) > 0 in (0, in). 

Then the corresponding solutions for $ and a decay or grow exponentially with a 
decrease in 8 from in. The range of 8 is finite so both solutions are acceptable. 

We may see from (4.1) that k(3) = - k(l) and k(4) = - &(2) are also eigenvalues (a tilde 
here denotes the complex conjugate). In  addition there are two eigenvalues, which we 
shall denote by k(5) and k@), that are purely imaginary a t  8 = in and are complex 
conjugates of one another there. Computed results show that they remain purely 
imaginary for all values of 8. 

From (4.1) it may also be noted that if k( j ) (8 )  (j  = 1, ..., 6) is an eigenvalue then 
so is k(j)(n-8) ( j  = 1, ..., 6), and therefore the equations need be solved only for a 
half-range, (0, in) say. There are two possible ways of continuing k('), k(2) and the 
corresponding eigenfunctions into (in, n): either 

Both solutions are continuous at 8 = in because k(l)(+n) = k(2)(&r) and is a real number, 
but considerations of symmetry about 8 = in lead us to choose the latter. That such 
a choice satisfies the conditions a t  the poles and matches with the solution near the 
equator is demonstrated in $5  5 and 6. Similarly, 

k y n  - 8)  = & y e )  or k y r  - 8) = Bye). 

k ( 5 ) ( ~  - 6)  = k@)(e) and k @ ) ( r  - 8)  = &(5) (8 ) .  

The solutions with indices I and 3 then oscillate and decay rapidly with latitude 
on both sides of the equator while those with indices 2 and 4 grow. The solutions with 
indices 5 and 6 do not oscillate with latitude and simply grow or decay exponentially. 
The general form of solution is therefore 

but we shall show in $ 6 that the coefficients of the two modes with indices 5 and 6 are 
zero a t  least to leading order in E.  

At this stage each mode may be discussed separately and we temporarily drop the 
index (j). 
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4.2. Adjoint equations 

Later on we shall need to use the system of ordinary differential equations adjoint to 
the system (4.1) for = 0. This is . .  

MtgA-PyA = O , }  

Nt f ;  - ikTo sin Sg: = 0, 
(4.4) 

where M+ = ( 0 2 -  k2) - ikToaAO(x) sin 28, 

N t  z ( 0 2  - k 2 ) 2  - ikTo sin 28[aA0(x) ( 0 2  - k2) + 2a&,(x) D], 
Pt E 2 cos 8( 1 - x) D + 2ik(  1 - z) sin 8. 

The boundary conditions are 

f ; = f ; ' = g ; = o  at x = O , 1 ;  f r= i  at x=O. 

The eigenvalues k and To are the same as those of the system (4.1) but of course the 
adjoint function pair (f A, g;) is different from ( fo, go). 

4.3. Order e 

Equating terms in (3.1) and (3 .2 )  in e, we obtain 

A,(Mg,+ikTosin8f,) = (Gll+ T,G,,+ikcot 8go)Ao+ (G13-2ikgu)dA0/d8, ( 4 . 5 ~ )  

A,(Nf' - P S I )  = (Fll + TlF12 + 2ik cot 8(D2 - k2)fo)  A0 

+ (q3 - 4ik(D2- k2) fa) dAo/d8,  (4.5b) 

with f l = f ; = g l = O  at x = O , I ;  f ; = I  at x=O.  ( 4 4  
Here 

F,, = - 4xk2(D2 - k2) fo  - 2x{2 cos 8[( 1 - x) D - 11 - 3ik( 1 - x) sin 8)  go 

- 2ikxTo sin 28[a~,(x) (D2 - k2)  - ~ { ~ ( x ) ]  fo 
+ ik2aAo(x) To sin 28(2xk - i cot 8)  fo  - 4( 1 - x) cos 8 go 

+ 2(3 COS' 8 - 1 )  T,[U:~(X) - aoo(D2 - k2)]  Dfo 

- 4T0 cos ~ { C O S  ~ [ U / ~ ( X )  D + aAo(D2- k2)] - ikuG0(x) sin 8) fa 

- (dk/d8) [2i(D2- 3k2) + 3kTosin 2 8 a ~ , ( x ) ]  fo + 2( 1 - x) sin 8ago/a8 
+ To sin 28[a;,(x) (D2 - 3k2) - afo(x)] afo/a8 - 4ik(D2 - k2) afo/a8 
+ 2 cosec28[cos 8(Q,D + QIX) - i k  sin 8!2,] go - ikT,($,;,(Dz- k2)  - $lzzz) fo, 

F12 = ik sin 28[aAo(x) (D2 - k2)  - a to (x ) ] fo ,  

F13 = - 2( 1 - x )  sin 8go + To sin 28(aAO(x) ( 0 2  - 3kZ) - ato(x))fo, 
G,, = (Zikx + 2xuio(x) To sin 28 + cosec 8To $,,) &go 

+ (2zTosin8+cosec8~lz)ikfo-2Toaoo(x) (3cos28-  l )Dgo  

- 2To( 1 - x) cos SDfo - igodk/d8 - 2ik ago/a8 - To sin 8afo/a0 

+ To sin 28ai0(x) ago/a8, 

(712 = (D2 - k2)  g,/To, 
G,, = (D2 - k2) go/ik = - To sin Ofo + Toaoo(x) sin 28g0, 

and $, and 0, denote (+ul + To$.,,) and (Qol + To Ql0) respectively. 
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The operators on the left of (4.5) are the same as those on the left of (4.1) and the 
terms on the right contain f o  and g o ,  which are known once (4.1) has been solved, and 
T,, which is yet to be determined. The amplitude functions A,(@ and A,(@ are as yet 
unknown; A,(@ may be determined as follows, but it is necessary to examine terms 
O(e2) to calculate A,(B). 

Since a non-trivial solution to the homogeneous equations (4.1) exists, the inhomo- 
geneous equations (4.5) have a solution if and only if their right-hand sides are 
orthogonal to the adjoint solution of (4.1)) i.e. (f A, g:). The orthogonality condition 
requires that multiplying the right-hand sides of (4.5~) b)  by g: and j :  respectively, 
integrating with respect to x over ( 0 , l )  and subtracting yields zero. This gives the 
following relation between A,, dA,/dB,  To, T,, k and 8: 

(4.7) f T1H12 + hl) f (H13 + h3) d A O / d 8  = O ,  

where H1i = (g:Gli - fAFl i )dx  (i = 1,2 ,3) ,  

h, = i k c o t 6 ~ 0 1 [ g o g ~ - f ~ 2 ( D ~ - k 2 ) f o ] a x ,  

h3 = - 2h, tan 8. 

Using the definitions of F16 and Gli (i = 1, 2 , 3 )  given above, we see that as 8 -+ 0 

dA,/dB N &cot OA,, or A ,  N (sin 8)4. 

The singularities in d A o / d 6  at 8 = 0 , ~  may be brought out by writing 

Ao(8) = (sin 6)a A,(@. 
Then (4.7) becomes 

(Hi1 + & Cot OH13 + TiH12) J o ( 8 )  + (Hi3 + h3) dAo/dO = 0. (4.8) 

The singularity still exists, of course, and we return to it in 5 6. 
In  the next section we demonstrate that, as 8-t in, H13 + h3-+ 0 for j = 1 , . . ., 4 while 

the coefficient of J,(@ in (4.8) remains non-zero. Near 8 = &r a new scaling is needed 
but elsewhere (4.8) may be integrated to give 

X0(6) = - 01 exp c" ~ ( 8 )  do ,  (4.9) 
J O  

where x(8)  = (H,, + 4 cot 8 + H13 + TlH12)/(H13 + h3) and CL is a constant of integration. 
The relative magnitudes of the six coefficients ai ( j  = 1, ..., 6) are determined by 
conditions at the poles and the equator but of course their absolute magnitudes 
remain arbitrary in a linear theory. Details of the calculations are given in $8 5 and 6. 

5. The neighbourhood of the equator 
At the equator (8 = in), the eigenvalue problem for k reduces to that for Taylor 

instability between infinite concentric cylinders with a small gap-to-radius ratio. I t  is 
well known that for T b To = 1694.95 there are four real solutions for k and two purely 
imaginary ones. At T = To the four real ones become -+ ko( = _+ 3.1265), twice, and 
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therefore k(') = U2) and k(3) = lc(4'. It is this coincidence of eigenvalues that causes the 
difficulties at the equator. 

In  order to discuss the solution near the equator in more detail we first investigate 
the limit of the mid-latitude solution as 8 -+ in. The eigenvalues k(5) and k@) present no 
special difficulty and kc3) and k(4) may be written in terms of k(l) and k@), so that we may 
confine our attention for now to k(i)withj = 1 , 2  and again drop the index. Let us write 
8 = 471 - $ and suppose &st of all that k ,  fo and go have regular expansions in $ for 
]$I  << 1 ,  i.e. 

k = ko+$k l+#2k2+ . . . ,  

(fo, 90) = (foe, goo) + W O l ,  901) + $2(f02, 902)  + .*. . 
Then substituting into (4 .1 )  and equating terms O($O) gives the classical Taylor 
problem 

where Mo = D2 - k i .  Terms O(#) give 

i Bo 901 + iko Toto, = - ik l  T o t 0 0  + 2ko kl goo + 2iko T0a;oSot 

Mtfo1+2iko(1 - X ) g o 1  = - 2 i ( l  -z) k l g o o + 4 k ~ k l M o f o o + 2 ( ( 1  -x)goo)'  (5 .2)  
+ 2 i k o T o ( ~ ~ o M o - ~ ~ ) f o o .  

The orthogonality condition for a solution of ( 5 . 2 )  to exist is 

where 
k ,  = A / B ,  

I (5.3) 
A = j :  ~ 2 ~ k o T o ~ ; o 9 o o g ~  - 2 ~ k o ~ o ( ~ ; o ~ f l o  - ~ll')foof;o - 2 [ ( 1 -  4 gool'fto} dx, 

and ( f A o ,  gh) is the adjoint pair a t  6 = Qn. 
Now the condition that To is a minimum as a function of k ,  with k, real may be 

obtained by differentiating (5 .1 )  with respect to k, and setting aTo/ako = 0 .  A solution 
of the inhomogeneous equations for agoo/ako and afoo/ako exists provided that 

This means t,hat the denominator of (5.3) vanishes and indicates that the expansions 
about k,, foo and goo are not regular. An appropriate expansion is found to proceed in 
powers of $+, i.e. 

k = ko+$*kl+$k2+ ..., } (5 .5 )  
Cfo, 90) = (foo, goo) + $%(fOI7 901)  + $[(f02, 9 0 2 )  + kZ(fO1, 90l)l+ . . . . 

MO 901 + iko To f 0 l  = - iT0 foo + 2ko goo, 

Thenf,, and goo again satisfy (5.1), butf,, and g o ,  now satisfy 

(5.6) 
Mgfo1+ 2ik0( 1 - X )  gol = - 2i( 1 - X )  goo + 4k0M0 foo. 

The condition that a solution of (5.6) exists is equivalent to (5.4). 
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Terms O($) now give 

(5.7) J J f o  9 0 2  + iko To foz = k2,( - iTOf0, + 2ko go1 + goo) + 2iko To 4 0  goo, 

Jf02f02 + 2ik,(1 - 2) 902 = 2k?[(Jfo - 2k3foo + 2ko 410 f 0 1 -  i( 1 - 4 go11 
+ 2ik0 To(aho J f o  - a{)foo + 2((  1 - x) goo)’. 

The orthogonality condition for a solution of (5.7) to exist yields an equation for k i :  

k: = - A / B ,  

where 

It will be observed that, sincefoo,fo, and fAo are real and goo, go, and gAo pure imaginary, 
we may write k? = -iK2, where K 2  is real; the computed value of K2 is 4.0199. We 
denote the solutions of (5.8) by 

kil) = &iK, ki2) = ebiK. 

We now turn our attention to the behaviour of the amplitude Bo(8), which satisfies 
(4 .8)  as 8-t in. Using the expansion (5 .5 ) ,  it follows from the definitions of H,,, H12, 
H13 and h3 in (4.7) that as q5 + 0 

Furthermore, h, remains O( 1 )  and H13 cot €’ is proportional to q5 as q5 --f 0. The leading 
term in h, + H13 vanishes by virtue of (5.4) and it follows that the coefficient of dAo/d6J 
in (4 .8)  vanishes at 3 = 0. Asymptotically (4 .8 )  becomes 

2( (b+ +PI q5 + . . . ) dAo/dq5 + $(#-+ +PO + . . . ) A, = 0, 

where p0 and p1 are constants given in terms of integrals involvingf,,, fol, fro, etc. It 
follows that 

where a’ is a constant. 

aocq5, - a’q5-4 exp UP1 -Po) $41 as $ -+ 0, 
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It is convenient to define that part of x whoseintegral is regular at qi = 0 by x* and let 

x = -&qi+x*. 

Using the expansion (5.5) for k and the definition (4.3) of $, we obtain 

and similarly for a. Here kk1) = k(2) 0 = -k(3)  0 = -k(4) 0 ,  k(1) 1 = k(3) 1 = e-&niK and 
ki2) = ki4) = egni K .  It is only the four eigenvalues k(j) with j = 1 ,  . . . , 4  that possess the 
square-root behaviour in 9 as 9 .+ 0 and consequently only these that make HI, 
singular and h3 + H13 zero there. The modes associated with j = 5 and 6 do not behave 
like 9-1 as 4 -+ 0 and therefore do not appear a t  leading order in (5.9). We note, 
however, that their contribution to $ satisfies the condition of antisymmetry 
$( - qi) = - $($) only if 

(5.10) 

3 and fi are therefore singular at 4 = 0 and a new scaling is needed when qi is small. 
The expansion (5.9) in powers of E breaks down when any of the terms in the exponent 
is O(1) for then it is comparable to the algebraic term. For small qi the third and 
subsequent terms are small and the second and first terms are O( 1 )  when qi = O ( d )  and 
O(s) respectively. We shall see later that a scaling 4 N E is necessary, but first we 
examine qi * €8. 

a,exp ( s,” x*(,)dqi] = - a6 exp ( x*(6)dqi]. 
n 

Let us write qi = € 8  $ with $ = O( 1) and then expand $ in the form 

$ = (EO exp { - iko€-&$} [Bo($)foo(z) + ~ $ B ~ ( $ ) . f ~ ~ ( z )  + 68B2($)fO2(x) + . ..I + c.c., 

where C.C. denotes the complex conjugate, and similarly for a. Here Bo($l), Bl($),  etc. 
are functions of $ to be determined and f o l ,  f O 2 ,  etc. are functions of x which will be 
shown to be related tof,,, fez, etc. On substituting this form of solution into (3 .1)  and 
(3 .2)  and equating coefficients of so we obtain (5 .1)  again, and equating coefficients of 
E$ we obtain 

Bl($).fOJ4 = TfOl(4 + Co(iWoo(x), (5.11) 

- 

idBo 

wherefo,(x) is given by (5.6) and Co($) is an arbitrary function. 
The terms O(&) satisfy 



Stability in a spherical annulus 685 

We may then write 

(5.13) 

and similarly for B,go2, where Cl($) is an arbitrary function of $ and f o 2  satisfies (5.7). 
The orthogonality condition then gives 

idCo 
B2 t o 2  = @o f 0 2  + - - - f O l +  Clt$)fOO, 

d b  

d2B0/dg2 + kt $Bo = 0. (5.14) 

Let us write k: = e-tinKZ with K real; then (5.14) becomes 

d2Bo/d$2 - e-gniK2$Bo = 0. 

The solution may be written as 

Bo($) -1 P1(Bi ( z )  -Ai (2)) +P2Ai ( z ) ,  z = e-@"K+$, (5.15) 

where Ai ( z )  and Bi ( z )  are Airy functions and Pl and P2 are arbitrary constants. 
To leading order in E we then have 

-- 
$(b) = exp { - ie-%ko$1 Bo($)foo(x) + exp W k O  $1 ~ o ( $ ) f o o ( 4  + * *, (5.16) 

where foo(x) is a real function of x. We require $($) to be antisymmetric about $ = 0, 
i.e. $( -3) = - $($). It follows from (5.14) that 

Bo( - $1 = - Bo(a (5.17) 

and from (5.15) that P l + A  = P 2 + - %  = 0. 

Equivalent conditions on a1 and a2 are obtained by matching with the solution in 
higher latitudes. 

Now, as $ -+ CQ 

Ai ( z )  - (4n)-i 2-2 exp { - i$z#} 
= (4*)-4 ebiK-*$-& exp { - 8e-tniK-d 9 )  
= (an>-& e*"iK-*$-& exp { - giki2)$*}, 

Bi ( z )  = Bi (e-*nizl), where x1 = e-*niK+$, - (in)-* e-*niz,t sin ( j x t  + in + i  In 24) 

= (47T)-i ebiK-*$-f[exp { - #ie%niK$#) + 2 e b i  exp { - g i e - t n $ ~ $ # > ]  

and 

Hence 

Bi (2) - Ai (2) - 2(4n)-* e%niK-*$-j exp { - gikr)$#}. 

Bo($) N (4n)-4 e4"iK-4$-*[2/31 exp { - #ik$]-)$%} +P2 exp { - #iki2)$$}]. (5.18) 

The solution given by (5.15)-(5.18) is equivalent to that given in (5.9) for the limit 
of the mid-latitude solution as $ + 0 if 
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The symmetry condition (5.17) then gives 

(5.20) 

where a; and a; are real numbers. 
At this stage the two modes j = 1,2  may still be discussed separately and it would 

seem to be possible to reject the one which grows with latitude (index 2)  by setting 
a2 = p2 = 0. We shall see in 3 6 ,  however, that both solutions are needed in order to 
satisfy the boundary conditions a t  the pole 0 = 0. First, though, we must continue 
with the solution near the equator. 

So far we have obtained the solution as far as the term in €8 except for an arbitrary 
function Co($) of $ in (5 .9) .  To this order the singularity in and a at the equator is 
smoothed out. If we now continue the expansion and examine terms in 6 we can 
compute Co($). 

The terms O(e)  give 

B3(IM0 803 + ikO ' 0  fO3) = (2 ik0  8Ob + f02) dB21d# - 8 0 1  d2B1/d$2 
t- 2ik0 To aAo &jOl B, - 2a;, To$goo dB,/d$ 

+ iko To Ql, f o o  + 2aoo To 960 - 2& goo + 2iko To Xfoo  

- iko Tl fool Bo, (5.21 a)  

B3(Mtfo3+2iko( l  - x ) g o 3  =[4iko1Clofoz+2(1 - ~ ) ~ ~ ~ ] d B z / d $ - 2 ( 1 M , - 2 k ~ ) f ~ l d ~ B J d $ ~  

+ 2@0 To(a;oJfo - atlo)f01+ [( 1 - X )  8 0 1 ) ' )  $4 
- ~ ~ o ~ ~ ; o J f o - ~ ; r o ~ f o o $ ~ ~ o / ~ $  

+ [6ik0x( 1 - X )  goo - 4~kE Mofoo - 2ik0 Q1 goo 

+2To(a&&-a&)fho] Bo. (5.21b)  

The orthogonality condition reduces to 

~1 d3B0/dP + ( ~ 2  + TI 7 3 )  Bo = ~ d d ~ C o / d P  + iQ4 (5.22) 
where 

Y1 = 

Y2 = 
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Y3 = - ~ 0 1 i k o f o o 9 ~ ~ x ,  

1 

0 
7 4  = - / { ( - g o o  +iTofOl -  2kOg,1) gA0 f [ ~ ~ o M o  f01- 2 i ( l  -x) 901 

- WJf, - 2G3fOOl f;o) d K  
We have made use here of (5.13) and its derivative. A solution of (5.22) is 

687 

C,(& = - ar, k,2 B,($) + iP dB,/dq5, 

where p = -ir3(T*-T1)/r4k?, T* = (hkb1-y2) /?3*  (5.23) 

We may note here thatfoo,fol, go, and the adjoint offoo are real while goo, go1,fo2 and the 
adjoint of goo are purely imaginary. It follows that y1 is purely imaginary and y2,  y3 
and y4 are real. Consequently T* is real and, since k: is pure imaginary, ,u is real also. 
Hence the solution in this region takes the form 

We have already shown that the leading terms in this expression match with the 
mid-latitude solution as $ -f co, but we need to say something more about the solution 
for small values of $. 

In  the flow between concentric cylinders a small increment eTl above the critical 
Taylor number To results in a change in the wavenumber proportional to (eT1)*. Here 
the presence of a secondary flow due to the curvature of the boundaries means that the 
flow is critical only at  $ = 0, but one anticipates that in a sufficiently small neighbour- 
hood of $ = 0 the effects of the secondary flow are slight and a square-root dependence 
on Tl apparent. However, in the narrow region discussed above where q5 N ef, the 
dependence on T,, through the term inp, is still seen to be linear. This suggests that an 
even smaller scaling for q5 is required. 

The solution (5.24) contains two scales for (6, namely ef and E ,  and therefore breaks 
down when q5 N e. In  that case we write q5 = EA or equivalently ;b = e+A and take A to 
be O( 1 ) .  Then we may seek a solution for $ in the form 

- + = ( E T ) ~  B,, exp { - ik, A - is%, A )  [f,, + e*Zl fol 

+ €(A3f,o + A%, + Aft2 +f23) + - - a ]  + C.C. (5.25) 

Here 5, is a correction to the wavenumber k, and is to be determined and Boo is a 
constant. By substituting this expansion into (3.1) and (3 .2 )  and equating terms in 
eA3, eA2, etc., we obtain 

f 2 0  = - 6k;fOO, fil = - 4ikKfO19 f 2 2  = f027 

where kf is defined by (5.8); the functionsf,,, fol andfO2 satisfy (5.1), (5.6) and (5 .7)  
respectively andf,, and gZ3 satisfy 

HO 923 + iTO kO f 2 3  = 2ik0 go2 - ik? fOl -k TO f 0 2  - ikO ' 1  f00 + 2aO0 ' 0  960 - 2xkt 900 

+ 2iko To d o 0  + w% go, - a, f0l + 900) + iko To 4, foe, 
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The condition that a solution exists reduces to 

6: = - (Y3 TI + Yz - k: Yl)/Y4. (5.26) 

The square-root dependence of El on Tl is now clear. In  order that the solution in the 
neighbourhood of the equator is oscillatory we require gl to be real and therefore, since 
y3/y4 turns out to be negative, 

'1 2 'lc = (k:yl-y2)/?3* (5.27) 

Numerical computation of all the quantities involved in TI, gives 

y1 = - 1.95 x lo-%, yZ = - 5 9 4  x loa3, y3  = - 3.21 x TlC = - 1860. 

It remains to verify that this solution matches with that given in (5.24) as $ --f 0. If 
$ 4 1 one solution of (5.14) is 

Bo($) = Boo( 1 - Qk: $3 + . . . ) 
and the corresponding solution of (5.22) is 

cO($) = BOO(Y3T1+Y2-k21Y1) <$2++*')/2?& 

When $ = e)A this means that $ becomes 
- 
@ = ( s T ) ~ ~ , , e x p ( - i k O A ) [ f O , ( ~  -$&:A- &ek:h3+ .,.) 

-fo1(+isk2,A2+ieE:A+ ...)+ EAfoZ+ ...I+ C.C. 

= (eT)t Boo exp ( - iko A} (COS (€&El A )  [( 1 - Bsk: A3 + ...)foe - @k?Azf,, + Afos + ...I 
+i&, sin ( E ~ E ~ A ) ~ ~ ~  + . . .} + C.C. 

This expression is equivalent to that obtained by adding together the solutions 
corresponding to the two roots for zl given by (5.26). A similar argument holds for the 
second solution of (5.14) for Bo($) and hence for the combination of solutions used in 
(5.15). 

Our discussion of the flow in the neighbourhood of the equator is now complete. In  
summary, we have found that in a region of thickness €5 the singularity in $ and at 
4 = 0 is removed and the solution is given in terms of Airy functions. The secondary 
flow is still a dominating influence and it is only in an inner region of thickness e that 
the effect of Tl becomes as important. 
Tl is still undetermined except that it should be greater than TIC. In  the next section 

we satisfy the boundary conditions a t  the poles 8 = 0, ?r and this allows Tl to take any 
of a discrete set of values. A complication arises because another new scaling is required 
for 0 near the poles and this is considered first. 
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6. The solution near the poles 8 = 0, n 
The expansion (3.5) in e breaks down when tan8 is O ( E )  bccause of the term in 

cot 0 8/80 in e j 2  [see (2.3)]. Near the poles 8 = 0, n a new scaling and a new solution are 
necessary and the latter is then matched with the solution valid in mid-latitudes 
presented in 4 4 as 6 + 0, n. 

At 8 = 0, (4.1) reduces to 

Mg, = 0, Mzfo-(l-x)g;+go = 0, (6.1) 

with fo = f h  = go = 0 at x = 0 , l .  (6.2) 

There is a spectrum of eigenvalues of this system of the form k = inn, where n is an 
integer, of which the first pair (n = 1) matches with (/V5), W)). There are, however, other 
complex eigenvalues given by sinh k = +_ k, 

whose eigensolutions are 
(6.3) 

fo = (l-z)sinhkxTxsinhk(l-x), go = 0. (6.4) 

The computed values of k(l) and k(2) at 8 = 0 are 2.25074 T i4-21239; they are related to  
the first eigenvalue of (6.3) (Hillman & Saltzer 1943). 

Hence, as 8 -+ 0, 

(6.5) 

6 

j=1 
N (sT)t ,@)(O)  (sin S)*ff)(O, x) exp { I j ( O ) >  exp{iku)(O) 6/e} ,  

N C Bf)(O) (sin 8)s sinh (k(j)(O) x) exp {I;.(O)} exp {ik(j)(O) Ole},  
6 

j = 5  

where 

to a first approximation in e. and now satisfy 

B;i2 = D@-z[(i-~)ai2/a~-i2:] = 0. 

The solution of (6.7) which matches with (6.5) as y -+ oc) is 

where Hi1) is the Hankel function of the first kind and order one and 

cj = e ~ ( ~ n k ( ~ ~ ( 0 ) ) ~ e ~ T i e x p { I j ( O ) ) ~ , - , j ( O )  (j = 1, ..., 6).  (6.9) 
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Using the relations between the eigenvalues (6.6) and the corresponding eigen- 
functions, 3 may be written as 

9 = ( sT)$y{ fr ) (O,  2) [ c lHi1 ) (W(O)  y) +c4Hi1)( - k(')(O)y)] 

+ f f ) ( O ,  2) [czHi1)(k(2)(0) y) + c3H$"( - W ( 0 )  y ) ]  

+ i sin 7r2[c5 H$l)(iny) + C6H\1)( - iny)]} 

= (ET)l y{fhl)(o, z, I('1-k c4) Jl(kcl)(o) y) + i(cl - c 4 )  K(g1)(O) y ) ]  

+fLZ)(o, 2) [(Cz + C g )  J1(k'2'(0) y) + i(C2 - C 3 )  Yl(k@)(O) 911 

+ i sin nz[(c5 + c6) Jl(iny) + i(c5 - c6) Yl(iny)l}. (6.10) 

In order that the velocity components be finite a t  y = 0 we require 3 N y2 as y 3 0, 
which means that 

Together with (6.9) and (4.9), the last condition contradicts (5.10) and means that 

= c4, c2 = c3, cg = c6. 

cg = c6 = a5 = a6 = 0, 

which confirms our earlier assertion that modes 5 and 6 play no part to this order in 6. 

From (6.9) the first two conditions give 

exp (11(0)} Aol(0) = eini exp (14(0)} AO4(0) = etni exp (&(O)}  zO4(0). 

Im {ejni  exp (11(0) + 12(0)}Aol(O) Ao2(o)} = 0. 

(6.11) 

Hence we require 

Using (4.9) and (5.18) we obtain 

tn 

0 
I m  {a;.; e f n i  exp {I,(o) + I,(o)} - exp! ( x * ( 1 )  +x*(2)) do} = o 

and since a; and a; are real numbers we have 

where m is an integer. 

7. Results and conclusions 

T at which instability first occurs. When c < 1 we write 
The main object of this paper is to determine the critical value of the Taylor number 

T = TO+€Tl+ ... . 

Since the azimuthal velocity of the inner sphere is greatest at  the equator we expect 
that it is there that the flow is most unstable. In the immediate neighbourhood of the 
equat#or, when #J = O(E),  we have found that to a first approximation the flow is 
equivalent to that between concentric cylinders. On this scale the north and south 
poles are at infinity and we require only that the wavenumber be real. The minimum 
value of T for which the wavenumber is real is known to be 1694.95 and we take 
this as our value for To. Furthermore, Tl produces a correct'ion to the wavenumber 
proportional to c* and t,he condition that this is real also is Tl 3 T,, = - 1860. 
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Then the solution may be matched with that in an outer region centred on #I = 0 
when #I is O ( d )  and through that region to the mid-latitude region, where #I is O( 1). The 
solution is continued to the poles through narrow regions where 8 or n - B is O ( E ) .  

The fluid velocity is finite a t  the poles provided that 

Here k(l) and k(2) are the eigenvalues of (4.1) and (4.2) that have positive real part; they 
have been computed numerically for several values of B for To = 1694.95 and are shown 
in figure 1.  To a first approximation in E ,  (7.1) reduces to 

Since the left-hand side is fully determined when To is given and E is a vanishingly small 
parameter this equation merely says that m is a large [O(c-l)] number and the equation 
is satisfied arbitrarily closely even when m is an integer. x*(l) and x * ( ~ )  have also been 
computed; the results give 

Jo'=Im (x*(l)+ x*(~))  dB = 6.78 + 8.58 x 10-4T1, 

and (7 .1 )  is therefore satisfied if 

Tl = 104[(m - 8 )  n - 8*267 /~  - 6.78]/8*58. (7.2) 

For each integer value of m there is a corresponding value of TI;  the spectrum of 
possible values of Tl is therefore discrete. The critical value of Tl is taken to be the least 
such value of Tl subject to the constraint Tl 2 TI, = - 1860. 

One could regard the correction to To as being due to two separate causes. First, the 
correction due t o  the flow in the immediate neighbourhood of the equator decreases 
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T by an amount 1880~ .  Second, T must be given an increment to ensure that the global 
condition (7.2) is satisfied. In  geometries where the flow becomes simultaneously 
unstable a t  all points (for example, BBnard convection in a box; see Hall & Walton 
1977) the latter correction is only 0 ( e 2 )  because the increment in wavenumber is 
proportional to the square root of the increment in the Taylor number. Here the 
increments in the wavenumbers x(l)* and x@’* vary linearly with Tl over the entire 
range of 6 except very close to 8 = &T. Consequently this correction is O ( E )  also and 
therefore is more important than might perhaps have been anticipated. 

Of course, for certain values of E ,  T, = - 1860 will satisfy (7.2) exactly for some 
integer value of m, but such values of E are exceptional. For example, when 6 = 0.1 
we find that the critical value of Tl is - 820 with m = 29 and the critical value of T is 
1613. When E = 10-2 the corresponding figures are - 210,266 and 1692.9. 

For E = 0.0527 we find the critical value of Tl to be 590 with m = 53 and the critical 
value of T to be 1726. This agrees fairly well with Wimmer’s (1976) experimental 
result of 1705.7 with experimental errors as large as k 113.7. Wimmer also reports that 
the critical value of T can be either greater or less than To and this agrees with our 
findings. 

The integer m is a rough guide to the number of cells that are fitted between the two 
poles, but because their amplitudes decay rapidly with latitude most will not be 
visible. In  the €8 region near the equator the e-folding distance for q5 is O ( E ~ )  and on this 
basis we might expect about E-4 cells to be visible. For only moderately small values of 
6 this suggests that very few cells will actually appear and this is borne out  by the 
experiments of Wimmer (1976). 

Finally we may examine the amplitudes of the two modesj = 1 ,2  which make up the 
solution. The magnitudes of the eigensolutions f!,”(O, x) and fi2)(0, x) are typically 
O( l) ,  so that the ratio p of the amplitudes of the two modes is 

From (6.11) we have 
rl  n 

J U  

and combining (7.3) and (7.4) we have 

p = exp E-1 Im {,%(I) - k(2)) do.  l o e  
Hence the amplitudes of the two modes are of similar orders of magnitude when 0 = 0 ,  
i.e. at the pole, but at the equator 8 = &T that mode which grows with latitude (index 2) 
is smaller than the mode which decays (index 1 )  by an exponential factor. 

The author wishes to thank Professor J. T. Stuart for some helpful discussions. 
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